
Foundations of Deep Reinforcement Learning

Max De Jong

Abstract

These notes come from the “Foundations of Deep Reinforcement Learning” series by Pieter Abbeel.

https://www.youtube.com/watch?v=2GwBez0D20A

Chapter 1

Lecture 1: MDPs Foundations and
Exact Solution Methods

We will start with small problems with small, discrete state-action spaces to get the main ideas
across. In future lectures, we will move beyond these exact solutions to consider larger state spaces.

1.1 Motivation

Deep reinforcement learning really gained momentum as a field in 2013, with the Deepmind result
applying DQN to Atari games. Prior to this result, RL had mostly been restricted to small, toy
problems. Following this groundbreaking work, the field exploded with many new results impacting
fields ranging from locotion problems, robotics control, and mastering complex games. In all of these
results, the agents performed their task not through hand-crafted routines but through learning
from their own trial and error.

1.2 Markov Decision Processes (MDPs)

Reinforcement learning aims to solve problems within the Markov decision process framework.
Within this framework, we have an agent and an environment. Our agents gets to choose an action
at, and after choosing that action the environment will change to some state st+1. The agents
observes this changed environment, gets to select another action, and so on. And with the current
state of the environment, there is an associated reward rt. The goal is for the agent to repeatedly
interaction with its environment and figure out the optimal action for the environment to maximize
its total reward. Note that in the MDP setting, we assume that the agent observes the entire state.
There is an alternative, partially-observed MPDs, that relax this assumption, but this variant will
not be our focus.

Formally, to define an MDP we require

• A set of states S.

• A set of actions A.

• A transition function P (s′|s, a) between states of the system.

• A reward function R(s, a, s′).

• An initial state s0.

1

• A discount factor γ to discount future rewards.

• A horizon H dictating how long the agent will be acting.

For a given MDP defined by (S,A, P,R, s0, γ,H), our goal is to find a policy π such that

max
π

E

[
H∑
t=0

γtR(St, At, St+1)|π

]
. (1.1)

That is, we wish to maximize our expected rewards discounted over time. If we can map our
problem of interest onto an MDP, we can hope to solve our problem within this framework.

To get a feel for problems within this framework, we will rely on a canonical example in this
lecture: grid world. This simple environment will allow us to gain intuition about MPDs and
reinforcement learning. Within grid world, we imagine

• An agent located at a particular grid cell.

• The actions of the agent include moving to any neighboring cell.

• There is one cell with a reward of +1 and one cell with a reward of -1 if reached.

Clearly, the goal is for our agent to navigate to the cell containing the positive reward. Mathemat-
ically, this is equivalent to finding a policy π satisfying

max
π

E

[
H∑
t=0

γtR(St, At, St+1)|π

]
, (1.2)

which is just the objective that we have already seen. Note that the dynamics within this world can
be adjusted. Perhaps we consider a case with deterministic actions, in which the agent can move
to the desired square deterministically. We could also consider the case of noisy actions, in which
the agent moves to the desired cell with some fixed probability. In this way, we can probe both
deterministic and stochastic systems with this simple toy example. In any case, because our world
is so simple, we can very intuitively understand the behavior of the agent. And for this example,
we can think of a policy of a map of actions for each grid cell. It is worth reflecting on the utility
of the discount factor γ ∈ [0, 1]. For γ 6= 1, future rewards are discounted. This leads to favoring
the shortest path to the grid cell with the positive reward, an important attribute of our desired
policy solution.

1.3 Exact Solution Methods

1.3.1 Value Iteration

An optimal value function V ∗(s) is the maximum we can achieve in expected discounted sum of
rewards if we are acting optimally. Mathematically, this is given by

V ∗(s) = max
π

E

[
H∑
t=0

γtR(st, at, st+1)|π, s0 = s

]
(1.3)

for an initial state s0. In our grid world example, this value function can be thought of as the best
case scenario for our agent. If the actions are performed deterministically and without a discount

2

factor, our agent can reach the desired cell, receiving a reward of +1, from all initial cells (assuming
our H is large enough). However, if it starts in the cell with the reward of -1, the highest score
achievable is -1. So we can write

V ∗(sx, sy) = 1− 2 · 1(sx,sy),(x′,y′) (1.4)

for cell at coordinates (sx, sy) if the cell containing the negative reward is located (x′, y′).
The situation becomes more complicated if we add a discount factor of γ = 0.9. If we start at

the cell with the reward, we receive the +1 reward without any discount, so we would have V ∗ = 1
for this state. What happens if we start one grid cell away from the reward? We can still reach the
reward, but we must first step towards it. Since this requires an additional action, this cell would
have V ∗ = γ · 1. And if we start two cells away from the reward, we require two steps and thus
have V ∗ = γ2.

We can make the situation again more complicated if we add in a non-unity action success
probability. Let’s say that the agent moves in the desired direction with probability p = 0.8. Now
we have more complex dynamics. If we start at the square with the reward, we immediately receive
our reward and again have V ∗ = 1. If we start in the adjacent cell, however, we obviously want to
move towards the reward. But this only happens if our action was successful, which occurs with
probability p. So this leads to a contribution V ∗ = p · γ · 1. But there is also a 10% chance that
the agent moves down or stays in place (due to the boundary conditions of the environment). To
make this concrete, let’s assume that the reward is located at square (3, 4). The adjacent square
then has

V ∗(3, 3) = 0.8γ · 1 + 0.1γV ∗(3, 3) + 0.1γV ∗(3, 2). (1.5)

This is an interesting expression, because we have a recursive expression for the values of the
neighboring cells. This is the key idea behind value iteration, which we will now explore more
properly. For this more careful treatment, we will also index our value function by how many time
steps still remain in the future. With H = 0, we will consider V ∗0 (s) as the optimal value for state
s with H = 0. This is our initialization, and we trivially have V ∗0 (s) = 0 ∀ s. With one remaining
time step, we can look at all actions available in our given state and then sum over all future states
given our initial state, tabulating the discounted rewards. Mathematically, this is

V ∗1 (s) = max
a

∑
s′

P (s′|s, a)
[
R(s, a, s′) + γV ∗0 (s′)

]
, (1.6)

knowing that we have V ∗0 (s′) = 0. This is the key idea of value iteration: we can decompose a
problem with an arbitrary number of timesteps remaining into the immediate reward plus the value
function with one fewer timestep remaining. In general, we can write

V ∗k (s) = max
a

∑
s′

P (s′|s, a)
[
R(s, a, s′) + γV ∗k−1(s

′)
]
, (1.7)

for a general value iteration.
We now have enough to write down the algorithm to perform value iteration (Algorithm 1).

This update scheme is termed a “value update” or a “Bellan update.” After enough steps, our
estimates converge to the optimal value for every state in our system. This is guaranteed to
converge according to a formal theorem, and at convergence we have an optimal value function
V ∗ for the discounted infinite horizon problem satisfying the Bellman equation. Once we have V ∗,
we can easily form the optimal policy π∗. Also, note that the infinite horizon optimal policy is

3

stationary, so that the optimal action depends only on s and not in time. This makes the policy
efficient to store.

Algorithm 1: Value iteration algorithm

Initialize V ∗0 (s) = 0 for all s;
for k ← 1 to H do

for s ∈ S do
V ∗k (s)← maxa

∑
s′ P (s′, |s, a)

[
R(s, a, s′) + γV ∗k−1(s

′)
]
;

π∗k(s)← argmaxa
∑

s′ P (s′, |s, a)
[
R(s, a, s′) + γV ∗k−1(s

′)
]
;

end

end

We can form some intuition behind this convergence. We know that V ∗(s) is the expected sum
of rewards accumulated starting with states acting optimally for ∞ timesteps. And V ∗H(s) is the
expected sum of rewards acting optimally for H steps. The additional reward collected during
timesteps H + 1, H + 2, . . . are given by

γH+1R(sH+1) + γH+2R(sH+2) + . . . (1.8)

which we bound using R(s) ≤ Rmax to write

γH+1R(sH+1) + γH+2R(sH+2) + . . . ≤ (γH+1 + γH+2 + . . .)Rmax (1.9)

≤ γH+1

1− γ
Rmax (1.10)

using the result for a geometric series. We see that this quantity decays as we increase our horizon,
so that the difference between V ∗(s) and V ∗H(s) for finite horizon H is bounded by a number the
decreases with H. Therefore, we see that V ∗H → V ∗ as H →∞.

In addition to the value function, there is another important abstraction for thinking about
these problems. We define Q∗(s, a) as the expected utility of taking action a from state s and
thereafter acting optimally. It is like a value function, but for a state-action pair rather than just
a state. We can also form a Bellman equation for these Q-values:

Q∗(s, a) =
∑
s′

P (s′|s, a)

[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
(1.11)

Here we measure the expected reward for the first action in the first term and then the expected
discounted reward for future state s′ in the second term. Note that this second term is really
equivalent to V ∗(s′), just written in terms of Q-values. We similarly can perform Q-value iteration
using this equation according to

Q∗k+1(s, a)←
∑
s′

P (s′|s, a)

[
R(s, a, s′) + γmax

a′
Q∗k(s

′, a′)

]
(1.12)

where k indexes the Q-values. This too will converge to the optimal set of Q-values that we can
use to determine a policy for our agent.

1.3.2 Policy Iteration

We just saw two flavors of value iteration (using V and Q) that allow us to converge to the optimal
policies for small MDPs. So why do we need to consider another method? As we will see as we cover

4

more advanced methods, some of these will build upon the value iteration approach and others will
build upon a policy iteration approach. So we need to understand both of these methods for a
complete understanding of the foundation of modern reinforcement learning.

Recall that in value iteration, we had an update rule according to

V ∗k+1(s)← max
a

∑
s′

P (s′|s, a)
[
R(s, a, s′) + γV ∗k (s′)

]
. (1.13)

In policy evaluation, we fix the policy using a given π(s). Practically, this means that we can no
longer rely on taking a maximum over all of the available actions but instead take actions according
to our policy π(s). This means that our policy evaluation now takes the form

V π
k+1(s)←

∑
s′

P (s′|s, π(s))
[
R(s, π(s), s′) + γV ∗k (s′)

]
. (1.14)

So if we are given some policy π, we can use it to run this policy evaluation to determine the
updates on our value functions. And upon convergence, we will find the value for that specific
policy, given by

V π(s)←
∑
s′

P (s′|s, π(s))
[
R(s, π(s), s′) + γV ∗(s′)

]
. (1.15)

Since this is just a special case of value iteration, we know it will converge. Note that our policy
can also be stochastic, so that we have π(a|s) rather than a deterministic policy π(s). In this case,
the update to perform policy evaluation is given by

V π
k+1(s)←

∑
s′

∑
a

π(a|s)P (s′|s, a)
[
R(s, a, s′) + γV π

k (s′)
]

(1.16)

Now that we can perform policy evaluation for both deterministic and stochastic policies, we
can form an algorithm to perform policy iteration. The idea is that given a policy, we can evaluate
it and then use that evaluation to improve our policy. This improvement in our policy is performed
iteratively, leading to the name “policy iteration.” For one of these iterations, the algorithm has
two steps:

1. Policy evaluation for current policy πk: Iteration until convergence

V πk
i+1(s)←

∑
s′

P (s′|s, πk(s))
[
R(s, π(s), s′) + γV πk

i (s′)
]

(1.17)

2. Policy improvement: find the best action according to the one-step look-ahead

πk+1(s)← argmaxa
∑
s′

P (s′|s, a)
[
R(s, a, s′) + γV πk(s′)

]
(1.18)

Here we are finding the action in state s that maximizes our immediate reward plus discounted
future rewards using policy πk.

We can repeat these iterations until convergence, and at convergence we have an optimal policy.
This approach often converges in fewer iterations than value iteration. But this comes with a
trade-off, since we have many small optimizations happening that are akin to value iteration within
each loop of our policy iteration. So while the overall number of “outer” iterations might be fewer,
there is more work on the inner iterations.

5

We know that policy iteration is guaranteed to converge and that it will converge so that both
its policy and value function are the optimal policy and optimal value function. Let’s try to form
some intuition behind these guarantees. To sketch the proof, we look at both of these guarantees
in turn.

1. Policy iteration is guaranteed to converge: the policy improves at every step. When we
perform a one step look-ahead, we are choosing the best action now and then using the
current policy. This is necessarily better than applying the current policy now and then the
current policy from the next step. Thus, the policy does indeed improve at every step, and
therefore a given policy can be encountered at most once. So after we have iterated many
times, we have covered all possibile policies and hence have converged.

2. Optimality is guaranteed at convergence: by definition of convergence, we have πk+1(s) =
πk(s) for all states s. So in our policy improvement step, taking the argmax is equivalent to
taking what is already prescribed by the policy. But this is just the value iteration equation.
This means that V πk satisfies the Bellman equation, so that we are at the optimal V ∗.

1.4 Maximum Entropy Formulation

To motivate this approach, let’s think about finding a distribution over near-optimal solutions
instead of a single optimal policy. In this case, we would have a more robust policy. If the en-
vironment changes, the distribution over near-optimal solutions may still have some good policies
for the new situation. We would also have more robust learning. If we can retain a distribu-
tion over near-optimal solutions, our agent will collect more interesting exploratory data during
learning. Data collection becomes more important as we move beyond small MDPs, so collecting
more “interesting” data will help introduce more variation in the data collected, leading to better
exploration and thus identification of optima.

With this motivation in place, let’s define entropy. Physically, it is a measure of the uncertainty
of a random variable. Specifically, it is the number of bits required to encode some random variable
on average. For a random variable X, it is given mathematically by

H(X) =
∑
i

p(xi) log2
1

p(xi)
(1.19)

= −
∑
i

p(xi) log2 p(xi) (1.20)

We can think of entropy as a measure of the variance associated with a sample from a distribution.
With this in mind, let’s bring entropy into our MDP framework. With the standard formulation,
an MDP aims to find

max
π

E

[
H∑
t=0

rt

]
(1.21)

With a maximum entropy approach, we instead maximize the sum of the rewards plus an extra
term encoding the entropy of the policy. If we make the policy deterministic, the entropy will be
zero. But if we instead maximize

max
π

E

[
H∑
t=0

rt + βH(π(·|st))

]
, (1.22)

6

we account for not just the reward but also the entropy of the policy in each state. This introduces
a trade-off: if we can better control our actions, we can more precisely control the rewards achieved
by the agent. The larger we make β, then, the more entropy we will have likely at the expense of
the total accumulated rewards. For the reasons we mentioned with more advanced training schema,
this trade-off can be worthwhile even if it comes with a decrease to our accumulated rewards.

To solve the maximum entropy MDP, we need to use constrained optimization. As a quick
recap, a general constrained optimization problem aims to perform maxx f(x) such that g(x) = 0.
To solve this problem, we typically form a Lagrangian

L(s, λ) = f(x) + λg(x) (1.23)

Our constrained optimization problem can then be expressed as maxx minλ L(x, λ). This La-
grangian is useful to us because at the optimum of the original problem, we must satisfy

∂L(x, λ)

∂x
= 0, (1.24)

∂L(x, λ)

∂λ
= 0. (1.25)

This provides us with a coupled set of equations that can be solved to find both x and λ. For a
one-step maximum entropy problem, we want to calculate

max
π(a)
{E[r(a)] + βH(π(a))} = max

π(a)

{∑
a

π(a)r(a)− β
∑
a

π(a) log π(a)

}
(1.26)

This becomes a constrained optimization problem since we require
∑

a π(a) = 1 since it represents
a probability distribution. So the constrained optimization can be written as

max
π(a)

min
λ
L(π(a), λ) =

∑
a

π(a)r(a)− β
∑
a

π(a) log π(a) + λ

(∑
a

π(a)− 1

)
(1.27)

Taking partial derivatives, we find

π(a) =
1

Z
eβ
−1r(a) (1.28)

with normalization constant

Z =
∑
a

eβ
−1r(a). (1.29)

This tells us exactly how actions with high reward receive high probability and actions with low
reward are exponentially suppressed. And as β → 0, our exponential approaches a delta function
and our policy becomes deterministic. And as β increases, the rewards become more uniformly
exponentiated and all of the actions receive a similar amount of probability mass. If we now plug
in this expression for π(a), we find

V = β log
∑
a

eβ
−1r(a), (1.30)

after some algebra, which just is a softmax function. So adding entropy changes the maximum that
we previously saw into a softmax, with the sharpness determined by the entropy scaling β.

7

Finally, we can perform maximum entropy value iteration for more than one step. We now wish
to find

max
π

E

[
H∑
t=0

rt + βH(π(·|st))

]
(1.31)

with a value function given by

Vk(s) = max
π

E

[
H∑

t=H−k
r(st, at) + βH(π(at|st))

]
(1.32)

For a one-step look ahead, we write

Vk(s) = max
π

E
[
r(s, a) + βH(π(a|sJ) + Vk−1(s

′))
]

(1.33)

Now using

Qk(s, a) = E
[
r(s, a) + Vk−1(s

′)
]

(1.34)

we can write

Vk(s) = max
π

E[Qk(s, a) + βH(π(a|s))] (1.35)

This now resembles the same problem that we saw before in the single step problem, just with r
replaced by Q. So we know that the solution is given by

Vk(s) = β log
∑
a

eβ
−1Qk(s,a) (1.36)

and the policy is given by

πk(a|s) =
1

Z
eβ
−1Qk(s,a) (1.37)

8

Chapter 2

Lecture 2: Deep Q-Learning

Previously, we looked at exact methods for solving MPDs. There are two main limitations with
these exact methods:

1. We require access to a dynamics model

2. We require iterations over all possible states and actions (impractical for large MDPs)

To move beyond these limitations, we have solutions for each:

1. Using sampling-based approximations for dynamics

2. Fitting either Q or V function (and later policy fitting)

The remainder of these lectures will look at various strategies to accomplish these two solutions.

2.1 Q-Learning

Recall thatQ∗(s, a) is the expected utility of state s, taking action a, and thereafter acting optimally.
These satisfy a Bellman equation:

Q∗(s, a) =
∑
s′

P (s′|s, a)

[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
(2.1)

and then Q-value iteration took the form

Qk+1(s, a)←
∑
s′

P (s′|s, a)

[
R(s, a, s′) + γmax

a′
Qk(s

′, a′)

]
. (2.2)

Using this equation assumes access to the transition model as well as the ability to iterate in our
system. First, let’s work on removing the necessity of access to a transition model. We can rewrite
our expression as an expectation value:

Qk+1 ← Es′∼P (s′|s,a)

[
R(s, a, s′) + γmax

a′
Qk(s

′, a′)

]
(2.3)

Once we have an expectation, we can approximate using sampling. By replacing expectation by
samples taken from the agent, we no longer require intimate knowledge of the dynamics model.
This leads to tabular Q-learning:

9

1. For a state-action pair (s, a), we receive s′ ∼ P (s′|s, a)

2. We consider our old estimate Qk(s, a)

3. And we consider our new sample estimate, given by

target(s′) = R(s, a, s′) + γmax
a′

Qk(s
′, a′) (2.4)

If this single sample were fully representative, this target value would become our new value.
But in general, this one-sample estimate will not be very precise.

4. So we will instead use a running average to incorporate our new estimate:

Qk+1(s, a)← (1− α)Qk(s, a) + α · target(s′) (2.5)

for some learning rate α.

This leads to the algorithm showin in Algorithm 2. This allows the agent to explore new state-action
pairs and allows the Bellman updates using the sampled values.

Algorithm 2: Tabular Q-learning algorithm

Initialize Q0(s, a) for all s, a;
Get initial state s;
for k ← 1 to N do

Sample action a, get next state s′;
if s′ is terminal then

target← R(s, a, s′);
Reset agent;
Sample new initial state s′;

else
target← R(s, a, s′) + γmaxa′ Qk(s

′, a′);
end
Qk+1(s, a)← (1− α)Qk(s, a) + α · target;
s← s′;

end

While this algorithm is simple enough, we have not decided how new actions are chosen. We
could choose random actions (zero greed). Alternatively, we could choose the action that maximizes
Qk(s, a) (full greed). One popular approach is to be ε-greedy: a random action is chosen with
probability ε, and a greedy action is chosen with probability 1 − ε. This allows exploration (the
random action) while also performing exploitation (the greedy action). This permits learning of
new state-action pairs and aids in converging. One amazing result of Q-learning is that it converges
to an optimal policy, even if we are acting suboptimally. This is called “off-policy” learning, and
the result that the optimal policy can be found while acting suboptimally is not trivial. However,
this comes with a few caveates:

• We require enough exploration

• We need to anneal the learning rate α

• . . . but not decrease it too quickly

Technically, these can be expressed precisely as

10

• All states and actions are visited infinitely often

• The learning rate schedule must obey

∞∑
t=0

αt(s, a) =∞ (2.6)

so that there is enough “power” left to correct for poor samples that may mislead us but also
that

∞∑
t=0

α2
t (s, a) <∞ (2.7)

to bound the variance.

2.1.1 Deep Learning

So far, we have been dealing with small discrete environments. For grid world, for example, we have
O(101) states, so storing Q(s, a) is not problematic. But even in a simple game like Tetris, we have
O(1060) unique states, and with an Atari game, we have O(10308) states. Clearly, storing a table
for these games would not be practical. We run into similar issues with continuous environments
crudely discretized. So we need an approach beyond relying on table storing all of the game
information. One alternative to storing a tabular entry for each state is to instead work with a
parameterized Q-function Qθ(s, a). This approach is termed “approximate Q-learning,” since we
are now approximating the Q-values for a given state-action pair by some function parameterized
by θ. By changing θ, we can represent different Q-functions. Traditionally, we could imagine that
this takes the explicit form of a linear function in features fi(s, a):

Qθ(s, a) = θ0f0(s, a) + θ1f1(s, a) + . . . (2.8)

Today, neural networks are a more popular representation for Qθ(s, a). Now θ represents the
weights of our neural network. Recall that in our Q-learning algorithm, we need to compute

target(s′) = R(s, a, s′) + γmax
a′

Qθk(s′, a′) (2.9)

Here we can rely on a neural network to decide the action a′ leading to the highest Q-value. We
also need a way of updating our weights so that our neural network learns to better approximate
the true Q-values. We apply a simple update rule such as

θk+1 ← θk − α∇θ

[
1

2

(
Qθ(s, a)− target(s′)

)2]∣∣∣∣
θ=θk

(2.10)

This is a loss function that penalizes our network from deviations between target(s′) and Qθ(s, a).
For a basic single layer perceptron, we have a linear function f(x) = Wx. For a multi-layer

perceptron, we will stack linear functions followed by some non-linear activation function. For
example, a two-layer network will look have an output

f(x) = W1 max(0,W0x) (2.11)

using a basic ReLU activation. With enough hidden layers, we can use a neural network to approx-
imate any function of interest. Of course, this requires some optimization, which is a non-convex

11

problem. However, gradient-based methods have proven to be surprisingly effective. Minibatch
stochastic gradients are often used rather than full gradients, and gradient calculation is handled
by automatic differentiation and then used in backpropogation to update network weights. The
most common optimiziers today include SGD with mommentum and preconditioning, which can
take the form of RMSProp, Adam, Adamax, and others. All of these details are hidden by a modern
package like TensorFlow or PyTorch.

2.2 Deep Q-Networks

With this brief recap of neural networks, let’s apply them to our problem of Q-learning. As we
mentioned, we will replace our table of Q-values with a parameterized Qθ(s, a) that takes the form
of a neural network. And we saw that each sample generated by the agent will generate a target
target(s′) that is mixed with the previous value for Qθ. Our Q-network is then updated using a
loss such as mean squared error. To avoid overfitting, we may batch our gradient updates.

2.2.1 Atari DQN

Let’s start with the algorithm used in the 2013 Atari paper, shown in Algorithm 3. This has
a few different features than we have seen before. First, it relies on a replay memory to store
previous results. And second, it actually introduces a second Q-function (the target Q-function)
that represents the same Q-function but is lagging from the other Q-function. As we will see, this
helps to stabilize learning. Finally, the other major difference is that the state used in our MDP is
different from the observation of the agent. The preprocessing φ maps an observation onto a state.
In the case of the Atari games, this was a sequence of frames (observations) that we stacked to
form a state that has more information (such as velocities).

Algorithm 3: Q-learning with experience replay

Initialize replay memory D with capacity N ;
Initialize function Q with random weights θ;

Initialize our target function Q̂ with weights θ− = θ;
for episode ← 1 to M do

Initialize sequence s1 = {x1}; Compute preprocessed sequence φ1 = φ(s1);
for t← 1 to T do

With probability ε select random action at;
Otherwise select at = argmaxaQ(φ(st), a; θ);
Execute action at, receiving reward rt and new image xt+1;
st+1 ← (st, at, xt+1);
Preprocess: φt+1 ← φ(st+1);
Store transition (φt, at, rt, φt+1) in D;
Sample random minibatch of transitions (φj , aj , rj , φj+1) from past experiences in D;
Set target value

yj ←

{
rj episode terminates at step j + 1

rj + γmaxa′ Q̂(φj+1, a
′; θ−) else

;

Perform gradient descent step on (yj −Q(φj , aj ; θ))
2 wrt θ;

Every C steps reset Q̂ = Q for stabilization;

end

end

12

One final detail of the original DQN algorithm is the use of Huber loss rather than squared loss
when computing the Bellman error. This is defined as a quadratic loss function for small deviations
and a linear loss for large deviations. This prevents any single target from causing too large of an
update in the neural network weights and makes the network more robust to outliers.

2.2.2 Modern DQN Improvements

While the DQN used by Atari was able to achieve very impressive results, it has benefitted from
a number of improvements since its inception. The first is this idea of double DQN. With a single
DQN, we introduce a bias in using maxaQ(s, a; θ), since this will overestimate our targets. Since
we already have two Q-networks, we can reduce the bias using Qθ for selecting the best action but
Qθ− for evaluating the best action. This introduces some independence between how the action is
chosen and how it is evaluated. In terms of our loss function, it will now take the form

Li(θi) = E(s,a,s′,r)∼D
(
r + γQ(s′, argmaxa′ Q(s′, a′; θ); θ−i)−Q(s, a; θi)

)2
(2.12)

Empirically, this leads to much faster learning.
Another important idea comes from using prioritized experience replay. Recall that we have

some buffer storing all of our past experiences. Replaying all transitions with equal probability
is highly suboptimal, since not all data is equally valuable. The idea with prioritized experience
replay is to keep track of the Bellman error. By keeping track of the difference between the observed
and predicted target values, we can give higher priority to these samples that we can better learn
from. This too has been shown to lead to much faster learning in practice.

There are many other improvements in addition to these two, including dueling DQNs, distri-
bution DQN (in which the reward distribution rather than just the expected value is learned), and
noisy DQN (which introduces more randomness in the actions). There is a famous paper named
“Rainbow DQN” that combines all of these modern improvements, and this is a natural place to
start when using any sort of DQN today.

13

Chapter 3

Lecture 3: Policy Gradients,
Advantage Estimation

3.1 Why Policy Optimization

In this lecture, we will look at using both policy gradients and advantage estimation to solve
large MDPs. A valid initial question is why we would bother with these methods after we have
learned Q-learning. In the current deep reinforcement learning landscape, there are multiple types
of methods that come with their own preferred use cases. For DQN methods, for instance, we
have very data-efficient methods but often are less stable than alternative approaches. If data
efficiency is not our bottleneck (for instance, because we have access to a fast simulator), we might
want to choose to have more simulation than Q-learning updates. When our data can be collected
quickly, “on-policy” methods may be preferred. In this class of methods, Q(s, a) is learned from
actions taken using the current policy π(a|s). These can be faster in terms of wall-clock time when
simulation is cheap.

First, to orient ourselves, let’s return to the MDP picture of an agent making actions in an
environment. With policy methods, our agent is really a policy πθ(a|s). For us, this policy will be
given by a neural network that will match a state to an action. Our goal is to learn the proper
weights of the network to maximize our expected reward. Mathematically, we wish to find

max
θ
E

[
H∑
t=0

R(st|πθ)

]
(3.1)

Typically, this network will output a distribution over actions. This means that we have a stochastic
policy class, and this helps to smooth out the optimization landscape. If our policies are deter-
ministic, there is no continuum between two candidate policies. This makes the optimization more
challenging. By adding in a stochastic interpolation between these two policies, we can arrive at
a smoother optimization. In addition, the data collected by the agent requires some exploration.
Stochasticity can help with this exploration. So our network will represent π(a|s), the probability
of action a in state s.

We have not yet addressed why we perform policy optimization. In many cases, π can be
simpler than either Q or V . For example, consider a robotics problem in which we want a hand to
grasp an object. We want the hand to move towards some object and close the mechanical fingers
to pick up an object. Without a quantitative knowledge of the time required to perform this action
or a metric to evaluate grasp quality, thinking of Q or V may be challenging. But thinking of the
correct strategy may be more simple and thus faster to learn. There is also an inherent shortcoming

14

in V : it does not prescribe actions. We need a dynamics model of the world (provided or learned)
to compute Bellman updates. While a Q function overcomes this limitation, recall that we need
to be able to efficiently solve argmaxaQθ(s, a). This becomes challenging for action spaces that
are continuous or high-dimensional. This becomes an optimization problem of itself. If we had a
policy, however, we could quickly read off the action for a given state.

3.2 Policy Gradient Derivation

To compute our policy gradients, we will work with the likelihood ratio. First, let’s define τ to
denote a state-action sequence (s0, a0), . . . , (sH , aH). We then define

R(τ) =
H∑
t=0

R(st, at), (3.2)

so that our objective can be expressed as

U(θ) = Eπθ

[
H∑
t=0

R(st, at)

]
(3.3)

=
∑
τ

P (τ ; θ)R(τ) (3.4)

And our goal is obviously to find θ satisfying maxθ U(θ). We again begin with gradient-based
optimization, so that we want to calculate

∇θU(θ) = ∇θ

∑
τ

P (τ ; θ)R(τ) (3.5)

=
∑
τ

R(τ)∇θP (τ ; θ) (3.6)

This is no longer a weighted sum, so let’s do a trick to fix this:

=
∑
τ

P (τ ; θ)

P (τ ; θ)
R(τ)∇θP (τ ; θ) (3.7)

=
∑
τ

P (τ ; θ)
∇θP (τ ; θ)

P (τ ; θ)
R(τ) (3.8)

This now permits a sample-based method, since we have expressed this as an expectation again.
To simplify our result, we can write

∇θU(θ) =
∑
τ

P (τ ; θ)∇θ logP (τ ; θ)R(τ) (3.9)

which can be empirically estimated by sampling m paths under policy θ according to

∇θU(θ) ' ĝ (3.10)

=
1

m

m∑
i=1

∇θ logP
(
τ (i); θ

)
R
(
τ (i)
)
. (3.11)

15

In practice, this means that we can use our current parameter values to perform a large number
of roll-outs. For each roll-out, we compute the gradient of the probability under the current policy
multiplied by the rewards collected along that trajectory. This likelihood ratio gradient that we
have formed is very interesting for two reason. First, it is valid even if R is discontinuous or even
unknown, since we aren’t taking derivatives with respect to the reward function. Second, it is valid
even when our sampled space of paths is a discrete set.

Let’s look at a little intuition behind this equation. The likelihood ratio gradient tries to increase
the probability of paths with a positive R and decrease the probability of paths with negative R. We
are effectively trying to push up the probability of trajectories with a large R and shift probability
mass away from trajectories with a negative R.

3.3 Temporal Decomposition

So far, we have thought about entire trajectories through our state-action space. Often times,
though, rewards are more localized. This is a reason to not perform a shift in probability mass in
terms of an entire path through our state-action space. For this reason, let’s decompose our path
into both states and actions. We can write

∇θ logP (τ (i); θ) = ∇θ log

 H∏
t=0

P
(
s
(i)
t+1|s

(i)
t , a

(i)
t

)
︸ ︷︷ ︸

dynamics model

·πθ
(
a
(i)
t |s

(i)
t

)
︸ ︷︷ ︸

policy

 (3.12)

Using the properties of logarithms, we can instead write

∇θ logP (τ (i); θ) = ∇θ

[
H∑
t=0

logP
(
s
(i)
t+1|s

(i)
t , a

(i)
t

)
+

H∑
t=0

log πθ

(
a
(i)
t |s

(i)
t

)]
(3.13)

Since the first term has no dependence on θ, this becomes

∇θ logP (τ (i); θ) =
H∑
t=0

∇θ log πθ

(
a
(i)
t |s

(i)
t

)
. (3.14)

Intuitively, since the model dynamics aren’t impacted by θ, we do not need them to take this
gradient. This is immensely helpful, since we dont’ require any dynamics model to compute this
gradient. Since the path τ (i) consists of both the dynamics and policy, being able to increase the
probability of a given trajectory without access to the dynamics model is not trivial.

Now let’s orient ourselves to the problem at hand again. We found that we can compute an
unbiased estimate of the gradient of our utility function using

ĝ =
1

m

m∑
i=1

∇θ logP (τ (i); θ)R
(
τ (i)
)

(3.15)

and we just found that we can write

∇θ logP (τ (i); θ) =

H∑
t=0

∇θ log πθ

(
a
(i)
t |s

(i)
t

)
, (3.16)

16

so that no dynamics model is required. In some sense, we could be finished here—we can apply roll-
outs of our current policy, collect the rewards along the trajectory, and perform backpropogation
by computing the grad log probability of the action given the state.

However, as we have formulated our approach thus far, out estimator would be unbiased but
very noisy. Recall that for an unbiased estimator, we require that

E[ĝ] = ∇θU(θ). (3.17)

In the real-world, we want reduce some of this sampling noise to have a practical approach. Possible
fixes include

• Adding a baseline subtraction

• Incorporating temporal structure

• Calculating a trust region / natural gradient (next lecture)

3.4 Baseline Subtraction

To understand the utility of baseline subtraction, let’s return to the intuition behind calculating

ĝ =
1

m

m∑
i=1

∇θ logP (τ (i); θ)R
(
τ (i)
)
. (3.18)

As we saw, this would increase the probability of trajectories with a large reward and decrease the
probability of trajectories with a negative reward. And of course, there is a little additional subtlety
here, since the probability can simply be increased for one trajectory without renormalizing. If we
think about what we really want, though, we would like to increase the probability not of trajectories
with R(i) > 0 but those with R(i) > 〈R〉 (and likewise decrease probability for trajectories with
R(i) < 〈R〉). We would require a lot of averaging effects in the naive formulation for trajectories
with large rewards to increase over those with smaller positive rewards.

This motivates thinking about adding in some baseline b. With this in place, we could write

∇θU(θ) ' 1

m

m∑
i=1

∇θ logP (τ (i); θ)
[
R
(
τ (i)
)
− b
]

(3.19)

We find that this modified expression for ĝ is still an unbiased estimator of ∇U(θ). This is because

E[∇θ logP (τ ; θ)b] =
∑
τ

P (τ ; θ)∇θ logP (τ ; θ)b (3.20)

=
∑
τ

∇θP (τ ; θ)b (3.21)

= b∇θ

(∑
τ

P (τ ; θ)

)
(3.22)

as long as our baseline doesn’t depend on the action occurring in the log probability in our action.
Since we require

∑
τ P (τ) = 1, this simplifies to

E[∇θ logP (τ ; θ)b] = b× 0, (3.23)

proving that our estimator is still unbiased upon adding in a baseline b. However, although adding
in b does not affect the estimate in expectation, the estimate that we accumulate benefits from
a reduction in variance with finite samples. This allows for a better gradient estimate with the
proper choice of baseline.

17

3.5 Value Function Estimation

We already performed a temporal decomposition for the trajectory probability P (τ (i); θ), which
resulted in the grad log probability for our policy given the state. But our rewards also have a
temporal element, so we can perform a similar temporal decomposition of our reward. We can
write

ĝ =
1

m

m∑
i=1

∇θ logP
(
τ (i); θ

)[
R
(
τ (i)
)
− b
]

(3.24)

=
1

m

m∑
i=1

(
H−1∑
t=0

∇θ log πθ

(
a
(i)
t |s

(i)
t

))(H−1∑
t=0

R
(
s
(i)
t , a

(i)
t

)
− b

)
(3.25)

We can now split up our reward sum into two parts to write

ĝ =
1

m

m∑
i=1

(
H−1∑
t=0

∇θ log πθ

(
a
(i)
t |s

(i)
t

))[t−1∑
k=0

R
(
s
(i)
k , a

(i)
k

)
+
H−1∑
k=t

R
(
s
(i)
k , a

(i)
k

)
− b

]
(3.26)

Now when we think about grad log probability of an action given a state, would it be reasonable
for it to be multiplied with a reward from the past? Since actions we take now can only influence
the future, the answer to this question is no. This is the motivation behind splitting our reward
sum above, since the first sum corresponds to rewards from the past for a given value of t and the
second sum corresponds to rewards from the future. Intuitively, we know that rewards from the
past should not appear in our estimate, and one can show with careful that the expected value of
including past rewards is zero.

By removing terms that don’t depend on our current action, we can lower the variance associated
with our estimator. Then, we are left with

ĝ =
1

m

m∑
i=1

H−1∑
t=0

∇θ log πθ

(
a
(i)
t |s

(i)
t

)(H−1∑
k=t

R(s
(i)
k , a

(i)
k)− b(s(i)t)

)
(3.27)

Additionally, we know that our baseline b cannot depend on the action a
(i)
t in order for our estimate

to remain unbiased, but it is ok to depend on our state s
(i)
t . So we can safely use rewards for a

given state accumulated from some time onwards as a meaningful baseline to be subtracted.
We now have a practical expression to perform policy gradients. We can perform m roll-outs,

each that contains a number of different steps. We accumulate the grad log probability of the action
we took for a given state and multiply this by the reward achieved from then onwards minus the
baseline. We then shift probability mass for each action specifically according to whether it lead
to above or below average rewards from that state moving forward.

So far, we have been loosely referring to “average” when talking about b. There are a number
of choices that researchers use

• Constant baseline

b = E[R(τ)] (3.28)

' 1

m

m∑
i=1

R(τ (i)) (3.29)

18

• Optimal constant baseline

b =

∑
i

(
∇θ logP (τ (i); θ)

)2
R(τ (i))(

∇θ logP (τ (i); θ)
)2 , (3.30)

which can be shown to lead to the minimal variance through a formal derivation. However,
this is not commonly used in practice.

• Time-dependent baseline

bt =
1

m

m∑
i=1

H−1∑
k=t

R(s
(i)
k , a

(i)
k), (3.31)

which have become very popular recently. This nicely captures the fact that there may be
less reward remaining at some time for an environment with a finite horizon.

• State-dependent expected return

b(st) = E[rt + rt+1 + . . .+ rH−1], (3.32)

which is really just equivalent to the value function V π(st) that we saw in Lecture 1. This
offers the highest degree of precision since it depends on the specific state and time, although
estimating this becomes almost a separate problem (as we will see).

3.6 Value Function Estimation

Let’s move forward with this final choice of baseline,

b(s
(i)
k) = V π(s

(i)
k), (3.33)

which requires us to estimate the value function.

3.6.1 Monte Carlo Estimation

One way to estimate this value function is through Monte Carlo estimation:

1. Initialize V π
φ0

2. Collect trajectories {τ1, . . . , τm}

3. Regress against the empirical mean:

φi+1 ← argminφ
1

m

m∑
i=1

H−1∑
t=0

(
Vφ(s

(i)
t)−

H−1∑
k=t

R
(
s
(i)
k , a

(i)
k

))2

(3.34)

This essentially becomes a supervised learning problem, in which we collect the true accumulated
rewards and try to minimize the deviation from those values. This is likely the first thing one would
do in practice, since it is easy and straightforward to implement.

19

3.6.2 Bootstrap Estimation

Alternatively, we could also try to bootstrap estimate V π. Recall that the value function satisfies
the Bellman equation

V π(s) =
∑
a

π(a|s)
∑
s′

P (s′|s, a)
[
R(s, a, s′) + γV π(s′)

]
. (3.35)

This is something that we solved exactly in Lecture 1, but we can also perform this in an approxi-
mation. In this case, our routine would look something like

1. Initialize V π
φ0

2. Collect data (s, a, s′, r) from our roll-outs

3. Perform fitting value iteration

φi+1 ← min
φ

∑
s,a,s′,r

∥∥r + V π
φi

(s′)− Vφ(s)
∥∥2
2

+ λ‖φ− φi‖22 (3.36)

where we have added some regularization on the network parameters φ.

3.6.3 Policy Gradient

With either choice of estimation, we can now form a complete algorithm to perform vanilla policy
gradient (Algorithm 4). Note that the bootstrap estimates are typically seen as being more sample
efficient but less stable. So in practice, the recommendation would be to start with Monte Carlo
estimation, and then you can try the bootstrap version and see if that improves the learning.

Algorithm 4: Vanilla policy gradient

Initialize policy network with weights θ;
Initialize baseline b;
for iteration ← 1 to N do

Collect a set of trajectories by running the current policy;
for timestep t in trajectory do

Calculate the return Rt =
∑T−1

t′=t γ
t′−trt′ ;

Calculate the advantage estimate Ât = Rt − b(st);
end

Re-fit the baseline by minimizing ‖b(st)−Rt‖22, summed over all trajectories and
timesteps;

Update the policy using the policy estimate ĝ, calculated by summing
∇θ log π(at|st; θ)Ât;

end

3.7 Advantage Estimation (A2C/A3C and GAE)

We will finally look at some methods for making the advantage estimation more efficient. Recall
that our full likelihood ratio policy gradient estimator is given by

ĝ =
1

m

m∑
i=1

H−1∑
t=0

∇θ log πθ

(
a
(i)
t |s

(i)
t

)(H−1∑
k=t

R(s
(i)
k , a

(i)
k)− V π(s

(i)
k)

)
(3.37)

20

Our first goal will be to improve this by doing something better than a single sample estimate for

R(s
(i)
k , a

(i)
k). If we were to estimate Q for a single roll-out, we would look at

Qπ(s, a) = E[r0 + r1 + . . . |s0 = s, a0 = a], (3.38)

which will have a high variance per sample and poor generalization. One we to improve this is to
reduce the variance by discounting, so that we instead estimate

Qπ,γ(s, a) = E
[
r0 + γr1 + γ2r2 + . . . |s0 = s, a0 = a

]
. (3.39)

At first, this seems a little weird, since we have already stated in our problem definition that an
MDP is defined by a discount factor. It turns out that algorithmically, treating this hyperparameter
as tuneable can help improve our estimation. If we think about what we are doing, we are trying to
evaluate how good an action is by looking at the grad log probability of a given state. Perhaps that
action has more influence to nearby actions, motivating a temporal weighting incorporated by a
discount factor. So now the discount factor is not motivated by the economics of our solution, as it
was in the formulation of the general MDP problem, but instead to represent the idea that actions
have more influence to nearby states for many problems of interest. This is essentially putting in a
prior that the effect of actions should decay with time to get a lower variance estimate of our policy
gradients. Of course, our baseline will also require a similar discount factor to allow comparison.

And another way to reduce the variance is to use function approximation. Sticking with the
discounted rewards idea, we wish to calculate

Qπ,γ(s, a) = E
[
r0 + γr1 + γ2r2 + . . . |s0 = s, a0 = a

]
(3.40)

= E[r0 + γV π(s1)|s0 = s, a0 = a], (3.41)

where we use a one-step look-ahead. Of course, this choice is arbitrary, and we could instead use
something like

Qπ,γ(s, a) = E
[
r0 + +γr1 + γ2V π(s2)|s0 = s, a0 = a

]
, (3.42)

or

Qπ,γ(s, a) = E
[
r0 + +γr1 + γ2r2 + γ3V π(s3)|s0 = s, a0 = a

]
. (3.43)

There are many such options that would be reasonable here. This is the idea behind the Asyn-
chronous Advantage Actor Critic (A3C) algorithm, in which Q̂ uses one of the above choices. The
number of steps to look ahead becomes a hyperparameter, and the original paper relied largely on
k = 5 steps to look ahead.

Why would we want to use this mixed approach? If we use a k = 0 approach (and don’t rely
on a value function estimation at all), we know that this is exact. Once we start relying on value
estimates, we may be introducing some error. But the benefit is that we are reducing variance, since
it is an estimate based on many past experiences. So there is essentially a trade-off between a zero
bias estimate (k = 0) with high variance to a choice with very low variance (k = 1, for instance) but
with very high bias. Somewhere between these two extremes, we likely find the optimal estimation
of the advantage for maximally fast learning.

The Generalized Advantage Estimation (GAE) algorithm works similarly but uses a lambda
exponentially weighted average of all possible values of k in forming Q̂. For some problems, this can
lead to better results than instead relying on one specific choice of k. This idea is closely related
to TD lambda and eligibility traces developed by Sutton and Barton long ago.

21

Regardless of our choice of forming Q̂, it is worth writing down the full algorithm for our
modified policy gradient approach. In Algorithm 5, we see how we can leverage both a policy and
value network for our policy gradients. Note that sometimes these are two separate networks, and
sometimes this may be a single network with two different heads. In addition to the choice between
how Q̂i is formed, there is also flexibility in the choice in the number of steps to look-ahead in the
value function. For example, we could use a one-step look ahead update for V , given by

φi+1 ← min
φ

∑
(s,a,s′,r)

∥∥r + V π
φi

(s′)− V π
φ (s)

∥∥2
2

+ κ‖φ− φi‖22, (3.44)

and a full roll-out for π:

θi+1 ← θi + α
1

m

m∑
k=1

H−1∑
t=0

∇θ log πθi(a
(k)
t |s

(k)
t)

(
H−1∑
t′=t

r
(k)
t′ − V

π
φi

(s
(k)
t)

)
(3.45)

to remove the Monte Carlo estimates. We have a large number of these variations, but we have
covered the main intuition behind the policy gradient algorithms. Once they begin to use sophis-
ticated advantages, they fall into the name “actor-critic” algorithms, where we have both an actor
(policy network) and critic (value network).

Algorithm 5: A3C/GAE policy gradient

Initialize policy network with weights θ0;
Initialize value network for current policy with weights φ0;

Collect roll-outs (s, a, s′, r) and form estimates of Q̂i(s, a) from roll-outs;

Update the value function using φi+1 ← minφ
∑

(s,a,s′,r)

∥∥∥Q̂i(s, a)− V π
φ (s)

∥∥∥2
2

+ κ‖φ− φi‖22;
Update the policy network using

θi+1 ← θi + α 1
m

∑m
k=1

∑H−1
t=0 ∇θ log πθi(a

(k)
t |s

(k)
t)
(
Q̂i(s

(k)
t , a

(k)
t)− V π

φi
(s

(k)
t)
)

;

22

Chapter 4

Lecture 4: TRPO, PPO

4.1 Surrogate Loss

We are going to rederive the policy gradient equation starting from importance sampling. We have
a utility

U(θ) = Eτ∼θold

[
P (τ |θ)
P (τ |θold)

R(τ)

]
(4.1)

so that the gradient is given by

∇θU(θ) = Eτ∼θold

[
∇θ

P (τ |θ)
P (τ |θold)

R(τ)

]
. (4.2)

This allows us to collect data from our old policy and use this expectation to improve θ.
Note that this equation holds true for any value of θ. If we choose to look at ∇θU(θ)|θ=θold ,

this reduces to a standard policy gradient. But it is a valid equation for any choice of θ. When we
have θ close to θold, the policy used to collect the data will be close to the new policy, so that the
data can be used efficiently. However, if θ is very far from θold, we likely have considerable variance
to deal with.

If we look at our loss again, we see that we are taking steps to minimize our loss, and the
gradient allows us to take a first-order approximation for our loss function. But what if we moved
beyond a first-order approximation? We will refer to

U(θ) = Eτ∼θold

[
P (τ |θ)
P (τ |θold)

R(τ)

]
(4.3)

as our “surrogate loss,” and we will look at doing something more advanced than just taking a
first-order approximation using the gradient.

4.2 Step-Sizing and Trust Region Policy Optimization

With this loss function in mind, let’s think about our choice of step size. The gradient only gives
us a first-order approximation that is good locally, so we don’t want to step infinitely far in that
direction. How can we go about choosing a good step size? Recall in supervised learning, if we
step too far, we can count on the next update to correct for that mistake. So terrible step sizes
are still an issue, but not so great step sizes are not really important since the data will provide a

23

correction. In reinforcement learning, however, a bad step size can result in a terrible policy, and
this terrible policy will give us terrible data. Then we cannot depend on the data gathered by this
policy to provide a correction. In the worst case scenario, this new data is no longer informative
and all of our learning is lost.

Ideally, we would have some way of estimating a good step size so that our agent is always
collecting good data and the policy is constantly improving. A simple step-sizing approach would
be to perform a line search in the direction of the gradient. This would look like taking a certain
step size, performing a number of roll-outs, and then evaluating these roll-outs. Although this
approach is simple, it is very expensive since we require many evaluations along this line. This
method is a bit naive, since it ignores information about where the approximation is good or bad.

Instead of taking gradient steps, there is an alternative approach named trust region policy
optimization using our surrogate loss. Instead of just computing an objective from this, we will set
up a loss function and optimize this loss according to

max
π

L(π) = Eπold

[
π(a|s)
πold(a|s)

Aπold(s, a)

]
, (4.4)

where the advantage is estimated from data collected under πold. Because this advantage is esti-
mated under the old policy, we need to be careful while optimizing our loss that we don’t move too
far from the old policy, or else the estimated advantage may not be very predictive. We will enforce
a constraint on the steps that we take to prevent our distance from the old policy from growing
too large, according to

Eπold [KL(π‖πold)] ≤ ε. (4.5)

This is now a constrained optimization problem that we can turn into an algorithm for TRPO,
shown in Algorithm 6. A specific instantiation of TRPO would be to use a first-order approximation
of the surrogate loss and perform conjugate-gradient based on the second order approximation of
the constraint. This particular choice is rather popular, but there are other variations within TRPO
as well.

Algorithm 6: TRPO

for iteration ← 1 to Nstep do
Run the policy for T timesteps or N trajectories;
Estimate advantage function at all timesteps;
Compute policy gradient g;
Use CG (with Hessian-vector products) to compute F−1g;
Perform line search on surrogate loss and KL constraint;

end

Let’s now think about how to evaluate the KL divergence. Recall that we can decompose our
trajectory according to

P (τ ; θ) = P (s0)

H−1∏
t=0

πθ(at|st)P (st+1|st, at). (4.6)

So when we compute the KL divergence between two distributions of trajectories over two different

24

policies, we can write

KL(P (τ ; θ)‖P (τ ; θ + δθ)) =
∑
τ

P (τ ; θ) log
P (τ ; θ)

P (τ ; θ + δθ)
(4.7)

=
∑
τ

P (τ ; θ)
P (s0)

∏H−1
t=0 πθ(at|st)P (st+1|st, at)

P (s0)
∏H−1
t=0 πθ+δθ(at|st)P (st+1|st, at)

(4.8)

The dynamics again cancel out, leaving us with

KL(P (τ ; θ)‖P (τ ; θ + δθ)) =
∑
τ

P (τ ; θ) log

∏H−1
t=0 πθ(at|st)∏H−1

t=0 πθ+δθ(at|st)
(4.9)

which now looks like an expectation that we can estimate using roll-outs

KL(P (τ ; θ)‖P (τ ; θ + δθ)) ' 1

M

∑
(s,u) in roll-outs under θ

log
πθ(a|s)

πθ+δθ(a|s)
(4.10)

4.3 Proximal Policy Optimization

TRPO is nice because it captures a lot of the intuition that we want and it allows us to extend
beyond a first-order approximation of our surrogate loss while the KL divergence keeps us close to
the policy collecting the data. However, this KL divergence also creates a second-order optimization
problem that we need to solve. Is it possible to create a version of TRPO where everything is first-
order? This would permit use of existing deep learning frameworks and likely scales better to
larger networks. Note that it is also not easy to enforce a trust region constraint for complex policy
networks. This could be due to network stochasticity introduced through dropout or parameter
sharing between the policy and value function. Also, the conjugate-gradient implementation is both
complex and fails to take advantage of the good first-order optimizers used for modern networks.

4.3.1 Version 1

The idea behind the first version of PPO is to move the constraint (the KL divergence) into our
objective. That is, our goal is now to solve

max
θ
Et

[
πθ(at|st)
πθold(at|st)

Ât

]
− β(Et[KL(πθold(·|st)‖πθ(·|st))]− ε), (4.11)

where we have added some weighting factor β. With a proper choice of β, this problem becomes
equivalent to the TRPO problem but we are left with just an optimization problem (and no longer
any constraint). This permits the use of gradient descent to improve our policy. Our pseudocode
for this version of PPO would look something like Algorithm 7. Here “dual descent” refers to a
specific procedure for updating β according to the value of the KL divergence. If the KL divergence
is close to ε, we are happy with our choice. But if our KL divergence is generally larger than ε,
we want to increase our β to increase the weight given to the KL divergence term. And if our
KL divergence is much smaller than ε, we can decrease our β so the next optimization pays less

25

attention to the KL divergence term.

Algorithm 7: Version 1 of PPO

for iteration ← 1 to Nstep do
Run the policy for T timesteps or N trajectories;
Estimate advantage function at all timesteps;
Perform SGD on objective for M epochs;
Perform dual descent update for β;

end

This version of PPO is a natural representation of the familiar TRPO problem, and it captures
much of the intuition that we want. However, there is another version that is much more popular
that we will cover now.

4.3.2 Version 2

Let’s look at our policy ratio, given by

rt(θ) =
πθ(at|st)
πθold(at|st)

. (4.12)

Recall that the other term that appeared in our objective for version 1 of PPO was a KL divergence
term meant to ensure that this ratio was valid. We can perhaps simplify this objective further by
looking carefully at this ratio. For the second version of PPO, we will directly do the trust region
inside of the objective using some clipping. To ensure that our ratio does not change by too much,
we can look at

clip(rt(θ), 1− ε, 1 + ε) (4.13)

to ensure that the new policy cannot deviate too much from the old policy. Finally, we compare
this clipped version to that obtained originally, giving us an objective

Lclip(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
. (4.14)

We take the minimum to be pessimistic, only taking the worse of the two. This allows us to not
trust the original if the clipped version is more pessimistic. And the clipping prevents θ from
changing our result if we go past an ε-distance from the original policy. So we cannot influence
the optimization beyond a certain point for a single state-action pair. This is a different way of
definining a trust region that comes directly from the objective. A benefit of this approach is
that the math is much simpler, since there is no calculation of KL divergence. This has led to
this becoming one of the most popular reinforcement learning algorithms today. This algorithm
is especially popular when data collection is efficient, since it optimizes for wallclock time rather
than sample efficiency, which benefits from off-policy methods like DQN and those we will see in
the next lecture.

26

Chapter 5

Lecture 5: DDPG, SAC

If we are not concerned about sample efficiency, PPO is likely the best algorithm for a reinforcement
learning problem. For scenarios in which sample efficiency is important, however, we likely want to
consider these two methods that we will discuss in this lecture. They reuse data from the past more
often, so that each piece of data contributes to more gradient updates. This allows the network to
extract more utility from less data.

5.1 Deep Deterministic Policy Gradient

Under DDPG, there are a number of tasks associated with each iteration:

1. Roll-outs: execute roll-outs under the current policy (plus some exploration noise)

2. Q-function update: we have estimates of our Q-function from the roll-outs collected:

Q̂(st, at) = rt + γQφ(st+1, at+1). (5.1)

Note that as we have seen, we have some flexibility in choosing how exactly we specify our
target Q̂. We use these to update our Q-function according to

g ∝∇φ

∑
t

(
Qφ(st, at)− Q̂(st, at)

)2
. (5.2)

3. Policy update: in addition to the Q-function, we also have a policy that is optimized by
looking at the Q-function for each state, which depends on the state as well as the action
taken under the current policy. We want to optimize the policy such that applying the policy
at states where we have samples will achieve a high value using our Q-function. This leads to

g ∝
∑
t

∇θQφ(st, πθ(st, vt)). (5.3)

In this way, we optimize our policy to shift probability mass towards actions resulting in
large Q-values (and vice versa). Because our policy gradient goes through the Q-function,
our policy could be deterministic (if desired).

There are a few improvements we can make over this basic idea. Frist, we want to add noise
for exploration, especially if our policy is deterministic. We can also incorporate both the replay

27

buffer and target network concepts from DQN to improve learning stability. Often people also use
a lagged version of Qφ and πθ for the target values Q̂t:

Q̂t = rt + γQφ′(st+1, πθ′(st+1)), (5.4)

This is similar to what we saw in DQN where we used older versions of the networks to stabilize
learning.

In practice, DDPG is very sample efficient thanks to the off-policy updates. However, it is often
unstable even with these improvements. This has led to the popularity of soft actor critic, which
adds the entropy of the policy to the objective to ensure better exploration and less overfitting as
a result of biases in our Q-function. For these reasons, SAC is often the algorithm of choice for
off-policy reinforcement learning.

5.2 Soft Actor Critic

At a high level, this can be thought of as the high entropy version of DDPG. We start with a soft
policy iteration approach. For each iteration, we will perform

1. Soft policy evaluation: for a fixed policy, we apply soft Bellman updates until convergence:

Q(s, a)← r(s, a) + Es′∼ps,a′∼π
[
Q(s′, a′)− log π(a′|s′)

]
(5.5)

to converge to Qπ. Here we have added the entropy term to our objective (like in Lecture 1
with maximum entropy) with weighting β = 1 for convenience.

2. Soft policy improvement: the plicy is updated through information projection

πnew = argminπ′ DKL

(
π′(·|s)

∥∥∥∥ 1

Z
Qπold(s, ·)

)
(5.6)

so that the policy is optimized using the exponentiated Q-values (like in Lecture 1). This

new policy will have Qπnew ≥ Qπold
.

In soft actor-critic, these optimizations are not performed exactly but instead are performed itera-
tively. First, a stochastic gradient step is taken to minimize the soft Bellman residual. And for the
second step, a stochastic gradient step is taken to minimize the KL divergence.

28

Chapter 6

Lecture 6: Model-Based RL

All of the previous algorithms fall under model-free reinforcement learning. This means that when
data is collected by the agent, a value function or a policy will be learned from that data. However,
in principle, there is something else that the data could be used to do. The agent could alternatively
learn a model of the world. This dynamics model would permit simulation, so that a policy could
be learned from this world model. This could allow learning without requiring additional data
collection in the real environment. Perhaps this would allow a great increase in sample efficiency.
The idea is that real world → data → model → value function/policy. In practice, we may need
to return to the real world periodically, but this is the general idea of model-based reinforcement
learning.

Note that unlike model-free reinforcement learning, the field of model-based reinforcement learn-
ing is more open-ended in the sense that there do not exist clear guidelines for when a particular
algorithm is the proper choice. There are also less mature algorithms, so there are more open
questions here. We will focus on two particular ideas, but there remains considerable variation in
how model-based reinforcement learning is approached.

6.1 Model-Based RL Framework

If we want to think of a vanilla model-based reinforcement learning algorithm, for each iteration
we would. . .

1. Collect data under the current policy

2. Learn dynamics model from past data

3. Improve policy using our dynamics model (either achieved using backpropogation-through-
time in the learned model or using the learned model as a simulation in which to run rein-
forcement learning)

Note that this routine requires iteration. If we only optimize our model within the simulator, it
may perform very well within the learned dynamics model, but this is an imperfect model with
limited data collected under the initial policy. The new policy may better exploit the system to
produce more interesting data that needs to be incorporated for our policy to perform well in the
real world.

As we hinted at previously, a model-based approach to reinforcement learning may lead to high
data efficiency. Since we are able to form a model from the collected data, we can get more policy
updates per data than just using a policy gradient. Additionally, by learning a model, we have

29

something that can be used for other tasks, since it is not specific to the rewards we are dealing
with. If the reward changed, for instance, the dynamics model would not.

Since a model-based approach can have these desirable properties, why is not this approach used
all of the time? In practice, this is one of the least commonly used approaches to reinforcement
learning. One reason for this is that it is less mature and requires more work. Also, if we have access
to a simulator, why do we choose to run dynamics in a learned simulator? This leads to training
instability, which is a major downside. Also in practice, we rarely achieve the same asymptotic
performance as model-free methods.

6.2 Robust Model-Based RL: Ensemble TRPO

This aims to improve the training instability that has traditionally limited the applicability of
model-based reinforcement learning. This uses TRPO since it was the state-of-the-art method
when it was developed, but if redone today, this would probably be ME-PPO. Regardless of this
slight difference, let’s return to overfitting in model-based reinforcement learning. First, let’s think
about standard overfitting in supervised learning. In this case, a network performs well on training
data but poorly on test data. With regularization, dropout, hold-out data, and other approaches,
we have solutions to avoid overfitting.

while this type of overfitting may be present in model-based reinforcement learning, there is
an additional manifestation of overfitting for model-based reinforcement learning specifically. We
know that our policy optimization step tends to exploit regions where insufficient data is available
to train the model. This is termed “model bias,” often leading to catastrophic failures. This is
because the policy will concentrate on regions where it expects a high reward in the simulator that
does not exist in the real system. In this way, we overfit our policy to our simulator by concentrating
on regions of parameter space that do not exist in the real world. The proposed fix in ME-TRPO
is to use multiple models for the dynamics, with the details shown in Algorithm 8.

Algorithm 8: Model-ensemble trust-region policy optimization

Initialize a policy πθ and models f̂φ1 , f̂φ2 , . . ., f̂φK ;
Initialize an empty dataset D;
for ienv ← 1 to Nenv do

Collect samples from real system f using πθ and add them to D;
Train all models using D;
for jsim ← 1 to Nsim do

Collect ficitious samples {f̂φi}Ki=1 using πθ;
Update policy using TRPO on the fictitious samples;
Estimate the performances η̂(θ;φi);

end

end

As we can see, we now estimate performance across multiple members of the ensemble models
for the dynamics. As we train an ensemble of dynamics models, we expect agreement between the
models whenever there is sufficient data to support accurate dynamics. When there is not enough
data, however, the predictions from these models will disagree. This tells us that we are outside
of the region of trust for our simulator, and this is what is leveraged to determine where new data
needs to be collected.

30

6.3 Adaptive Model-Based RL: MB-MPO

We just saw how using an ensemble of models can make our model-based reinforcement learning
approach more robust. But can we do more? We know in the real world, for instance, there is not an
ensemble of simulators but a single simulator. Can we learn something that can quickly adapt to the
real world rather than something robust, which may mean that it is more conservative as a result.
We now look into model-based meta-policy optimization, which aims to match the asymptotic
performance of model-free reinforcement learning approaches by acting less conservatively.

The obvious fix is to simply learn a better dynamics model. But the problem is that this is very
challenging. Instead, we apply model-based reinforcement learning using meta-policy optimization.
The key idea is that we learn an adaptive policy that can quickly adapt from a learned model in
which it was trained to the real world. To accomplish this, we still learn an ensemble of models for
the world dynamics. But now we learn an adaptive policy that, when deployed within any of these
models, can quickly adapt.

Algorithm 9: Model-based meta-policy optimization

Initialize a policy πθ and models f̂φ1 , f̂φ2 , . . ., f̂φK ;
Initialize an empty dataset D;
for ienv ← 1 to Nenv do

Collect samples from real system f using adapted policies πθ′1 , πθ′2 , . . ., πθ′K and add

them to D;
Train all models using D;
for k ← 1 to K do

Sample trajectories Tk from {f̂φi}Ki=1 using πθ;
Compute adapted parameters θ′k = θ + α∇θJk(θ) using Tk;
Sample imaginary trajectories T ′k from f̂φk using adapted policy πθ′k ;

end
Update θ → θ − β 1

K

∑
k∇θJk(θ

′
k) using {T ′k};

end

31

	Lecture 1: MDPs Foundations and Exact Solution Methods
	Motivation
	Markov Decision Processes (MDPs)
	Exact Solution Methods
	Value Iteration
	Policy Iteration

	Maximum Entropy Formulation

	Lecture 2: Deep Q-Learning
	Q-Learning
	Deep Learning

	Deep Q-Networks
	Atari DQN
	Modern DQN Improvements

	Lecture 3: Policy Gradients, Advantage Estimation
	Why Policy Optimization
	Policy Gradient Derivation
	Temporal Decomposition
	Baseline Subtraction
	Value Function Estimation
	Value Function Estimation
	Monte Carlo Estimation
	Bootstrap Estimation
	Policy Gradient

	Advantage Estimation (A2C/A3C and GAE)

	Lecture 4: TRPO, PPO
	Surrogate Loss
	Step-Sizing and Trust Region Policy Optimization
	Proximal Policy Optimization
	Version 1
	Version 2

	Lecture 5: DDPG, SAC
	Deep Deterministic Policy Gradient
	Soft Actor Critic

	Lecture 6: Model-Based RL
	Model-Based RL Framework
	Robust Model-Based RL: Ensemble TRPO
	Adaptive Model-Based RL: MB-MPO

