

Avoiding Common Pitfalls with Hosting
Machine Learning Models
Max De Jong | June 13, 2024

Who Am I?

Applied scientist with academic background

Realized that a “full ML stack” understanding required for maximum impact

2 Background

Explosion of Open Source Models

There has never been a better moment to build with machine learning

3

Breakthroughs in models don’t translate to ML democratization

Yet Something Is Missing…

4 Background

Major Knowledge Gap

Lack of intermediate resources makes learning much harder than
necessary

5

Resulting Difficulty Cliff

Very hard to transition out of the beginner phase of a project without enough
educational resources

6 Background

Today’s theme: finding atomic, tractable improvements to allow for
meaningful iteration

Along the way, identifying pitfalls to avoid

Flattening the Difficulty Cliff

7 Background

Machine learning solutions are costly to properly build and maintain
Lots of models end up not working as intended

Goal: avoid sinking time in untested ideas while avoiding getting crushed by
technical debt if we want to scale our solution

Think “scalable proof of concept”
It’s ok to have “bad” system designs as long as they can be easily
improved

Building Philosophy

8 High-Level Building

Prototype locally, deploy to AWS

Where to Build

9 High-Level Building

How to Build

1. Fact Finding

2. Bake-off

3. Microservice Translation

4. Cloud Essentials Migration

5. Full Cloud Migration

Machine Learning

Software Engineering

Solutions Architecture

10 High-Level Building

Specific Application: 3D Pose Estimation

What is possible with open-source models?
Some benchmarks for general tasks
Nothing for our specific use case

11

Step #1: Fact Finding

Double-pronged investigation through literature and repos

Goals:
1. Learn something about the classes of models
2. Make a list of repos with public code/weights

Step 1/5: Fact Finding12

Fact Finding

Two major classes of approaches: top-down vs. bottom-up

Lots of potential projects to try

Benchmark results are only a
starting point

13

Step #2: Bake Off

“Simple”: clone the repos, read the READMEs, and run the example scripts

Two main obstacles:
1. Managing CUDA versions
2. Bit rot

14 Step 2/5: Bake Off

Managing CUDA Versions: Wrong Way

Main obstacle: CUDA

15

Solution: Docker

Every project gets a Dockerfile

Install a recent version of CUDA on your machine
Pin it until you have a good reason to upgrade

Every ML project gets its own container isolated from your system

Step 2/5: Bake Off16

Bit Rot

Many academic repositories are not maintained

Step 2/5: Bake Off17

Finalizing Architecture
End goal: settle on the model pipeline

Object Detection 2D Pose
Estimation

3D Pose
Estimation

Step 2/5: Bake Off18

https://docs.google.com/file/d/1zeBzdzMVp8MIjW7uvc4avqpcKWKNrh4T/preview
https://docs.google.com/file/d/1vUWCdPjM1BPD_neIc_192tQwT1NwbjvP/preview
https://docs.google.com/file/d/15DJP-puUoI26Cig-TVgJ6YOh7J2wqwgb/preview
https://docs.google.com/file/d/1VVqsQZ1q7cD849XHnxzlO2uDH7iYIpeN/preview

Step #3: Microservice Translation

General procedure:

1. Wrap model inference in APIs using Flask/fastAPI

2. Create a web server using gunicorn/uWSGI

3. Run NGINX reverse-proxy

Step 3/5: Microservices
19

19

Microservice Translation

Main obstacle: Monolith with tight coupling

Step 3/5: Microservices20

Docker Compose

Other containers supporting the ML microservices
Database, utilities, front end, etc.

Docker Compose allows running multi-container applications

Step 3/5: Microservices21

Microservices End State

Local containerized service running end-to-end

Step 3/5: Microservices22

https://docs.google.com/file/d/1I_LI3szCfXGuA2CB_Z9YgwYVqcwrerGT/preview

Step #4: Cloud Essentials

Still major design decisions before choosing a cloud architecture

Some common elements to all routes: database and object storage
These are the first things we don’t want to manage

Step 4/5: Cloud Essentials23

Hobby projects really benefit from a scale-to-zero database

Minimum monthly cost of Aurora serverless: $43
Minimum monthly cost of Aurora on db.t4g.medium: $53

Database Choice

Step 4/5: Cloud Essentials24

S3 always a good starting point

Later migrate to something EFS or similar

Storage

Step 4/5: Cloud Essentials25

Two routes here:
1. Run the microservices on Elastic Container Service
2. Run the microservices on Elastic Kubernetes Service

But first, let’s get ready for running containers on AWS hardware

Step #5: Full Cloud Microservice Deployments

Step 5/5: Cloud Migration26

Elastic Container Registry

Use ECR to store Docker container images

Large models produce large images

Step 5/5: Cloud Migration27

Optimizing Dockerfiles for ECR

Pushing to ECR is slow: think about layers

28 Step 5/5: Cloud Migration

Precursor: EC2 with Docker

Spin up an EC2 instance with a GPU (p3.2xlarge)
Recreate your local Docker Compose app pulling from ECR

CPU Dockerized applications behave better than GPU applications

If we have to debug something, let’s do it in easy mode

Step 5/5: Cloud Migration29

Elastic Container Service
Less complexity
Scale to zero

Elastic Kubernetes Service
Best practice for full control
Easier local development
Multi-cloud solution

Choosing Cloud Direction

Step 5/5: Cloud Migration30

Elastic Container Service

True container orchestration: scalable

Translate our Docker Compose YAML
to a Task Definition

To start, group all GPU containers into a single Task

Step 5/5: Cloud Migration31

Working with ECS

Pay attention to the Network Mode in Task Definitions

Can scale to 0 with some effort

Expose endpoints using Service Discovery/Service Connect

Don’t be afraid to re-architect system to better utilize AWS services
API Gateway has 30 second timeout

Step 5/5: Cloud Migration32

Final Architecture

Step 5/5: Cloud Migration33

Recap

We started with a problem we wanted to solve

1. Found many potentially relevant repos with model weights

2. Determined the best model(s) for our use case

3. Created local microservice with Docker Compose

4. Moved storage to cloud

5. Migrated full microservice to AWS

34

